FIN 532

Problem Set 3

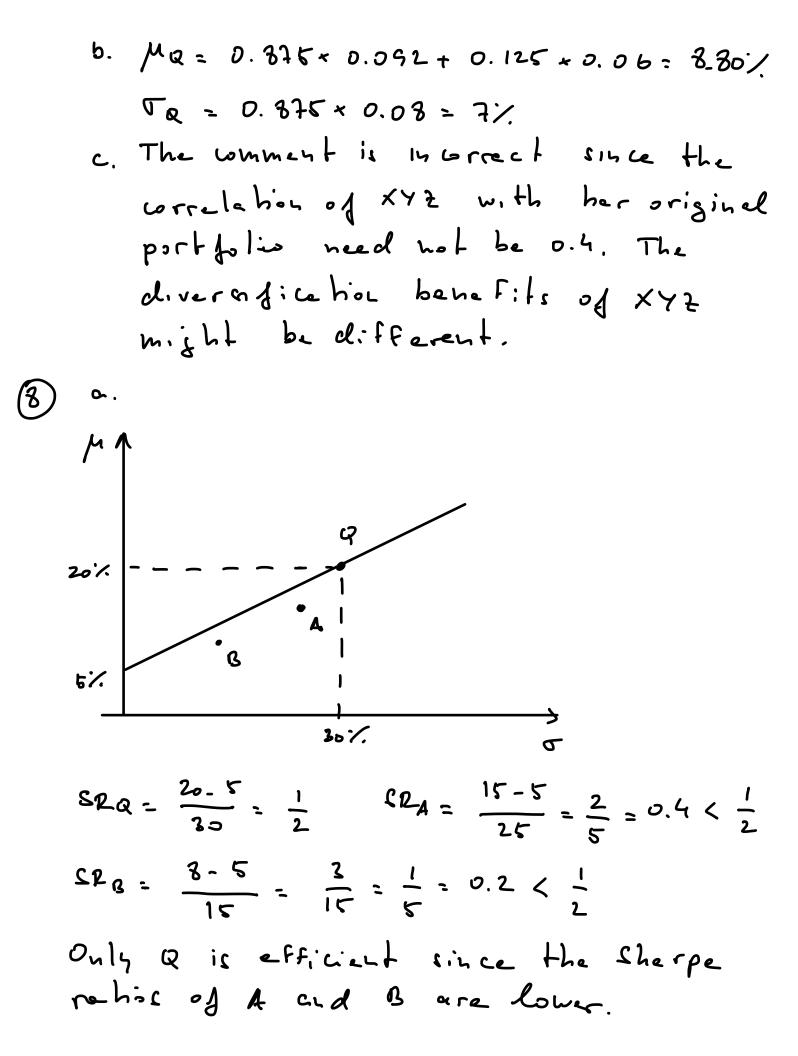
$$\nabla_{HV} = \int W_{B}^{2} \nabla_{B}^{2} + W_{S}^{2} \nabla_{S}^{2} + 2 W_{B} W_{S} \nabla_{B_{S}} \nabla_{S} \nabla_{S}$$

د.	Ws	WB	Mp	G p
	0%	100%	12%	15%
	25%	8°%.	13.6%	
	40%	60 %	15.2%	13.94%
-	631.	40°%.	16.8%	15.20%
	80 /.	20 %	18.4%	24.48%
	les - /	o'/.	20'/.	30%

,

(a) The statement is true if all
investors have preferences like

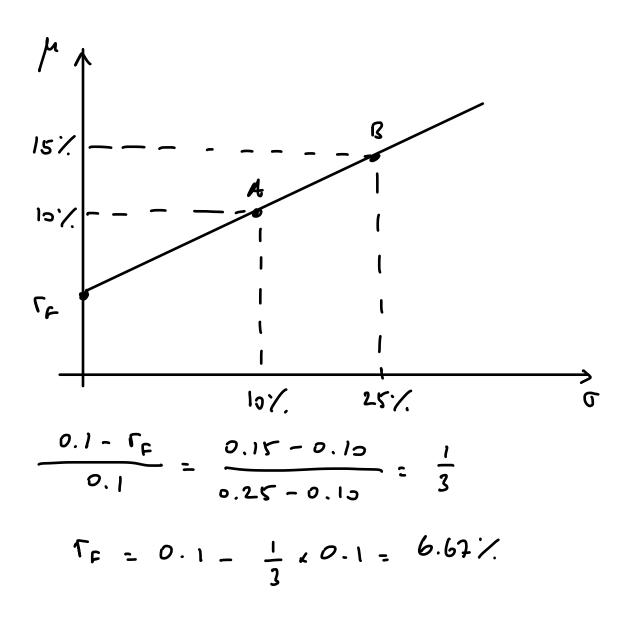
$$U = \mu - \frac{1}{2} A \sigma^2$$
.
This is the essence of the CAPM.
(b) This is not true in general. We saw
in cless that covariances between
the returns of nisky assets also
matter.
(c) a. Let's cell P the original port folio
and Q the new port folio.
 $Ta = Wp Tp + WABE TABE$
 $Wp = \frac{1,400,000}{1,600,000} = 0.875$
 $MABE = 0.125^{-1}$
 $\mu Q = 0.875 \times 0.092 + 0.125 \times 0.16 = 10.05\%$
 $\sigma_{Q} = 0.875 \times 0.092 + 0.125^{-2} \times 0.162^{-1}$
 $+2 \times 0.875 \times 0.125^{-1} \times 0.08 \times 0.16 \times 0.4$
 $\sigma_{Q} = \sqrt{Gq^{-1}} = 8.01\%$



b. We can combine
$$r_{F}$$
 and Q to obtain
a $\frac{2}{3}$, return.
 $0.3 = (1-W) 0.05 + W \times 0.25$
 $W = \frac{0.3 - 0.05}{0.2 - 0.05} = \frac{0.25}{0.15} = \frac{3}{5} = 60\%$
He should invest 60% in Q and
 40% in the nsf-free -road.
The standard deviation of such
part folion is
 $S = 0.6 \times 0.3 = 18\%$
 $c. 0.1 = (1 - W_{B}) 0.15 + W_{B} \times 0.08$
 $W_{B} = \frac{0.1 - 0.15}{0.08 - 0.15} = \frac{5}{2}$
 $W_{A} = \frac{2}{7}$
 $S^{2} = (\frac{2}{7})^{1} \times 0.25^{2} + (\frac{5}{7})^{1} \times .15^{2}$
 $+ 2 \times (\frac{2}{7}) \times (\frac{5}{7}) \times 0.25 \times 0.15 \times 0.24$
 $S = 14.23\%$ $S_{R} = \frac{10 - 5}{14.23} = 0.3513 < \frac{1}{2}$

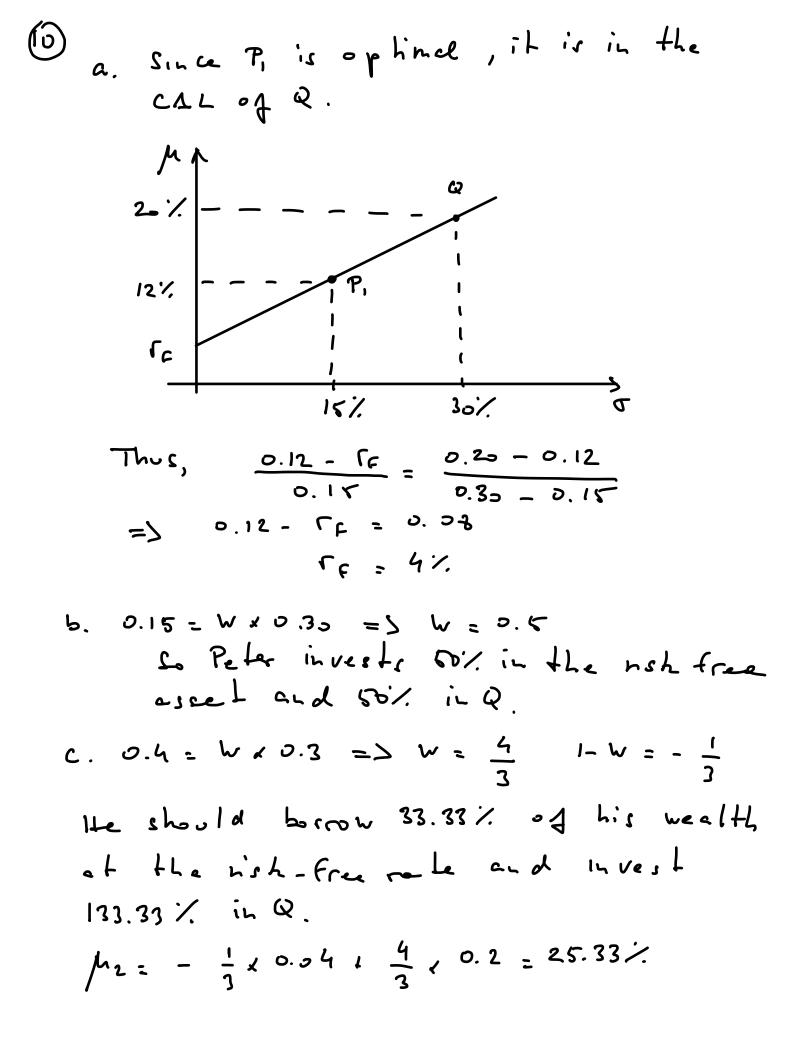
(A) A.
$$\nabla AB = \sqrt{0.01} \times \sqrt{0.0625} = 0.025$$

b. $0.05 = (1 - WB) \times 0.15 + WB \times 0.15$
 $WB = \frac{0.05 - 0.15}{0.15 - 0.15} = -1$
 $WA = 2.$
You should short-sell los' of B and
Invest your cap; fol plus the proceeds
of your short celling in A.
c. The HVP will have zero nich.



d. Both asselve A and B are afficient
since they have the same Sharpe ratio
which in this lace is the maximum.
The port folio to poted in b. is
inefficient since its acpected return
is lass then the not free rate.
e. We know that the portfolio that
achieves 6.67% has to oright us
(I-WE)
$$TA + WE TB = 0$$

 $WB (TB - TA) = -TA$
 $WB = -\frac{TA}{TB - TA} = -\frac{0.1}{0.25 - 0.1} = -\frac{2}{3}$
 $WA = 1 + \frac{2}{3} = \frac{5}{3}$
Chech: $M = \frac{5}{3} \times 0.10 - \frac{2}{3} \times 0.15 = 6.67\%$
Therefore, borrow as much as you can
at $W%$. Short teh $\frac{2}{3}$ of that amount
of asset B. Invest all that in asset A.



(1) A.
$$Er_{x} = 0.05 \pm 0.7 \times (0.15 \pm 0.05)$$

= 12%
 $A_{x} = 15\% \pm 12\% = 3\%$
 $Er_{y} = 0.05 \pm 1.6 (0.15 \pm 0.05)$
= 21%
 $d_{y} = 18\% \pm 21\% \pm -3\%$
b. $SR_{x} = \frac{12 \pm 5}{37} \pm 0.189$
 $SR_{y} = \frac{21 \pm 5}{26} \pm 0.615$
c. i. Stock × has higher & so it is
more appropriate to add to a
well diversified portfolio.
ii. Stock × has higher S2 so it is
more appropriate to hold as a
single stock portfolio.
d. $Er_{x} = d_{x} \pm \frac{e^{cAPh}}{5}r_{y} = 15\%$
 $r_{x} = 0.7 \times 0.16 = 11.2\%$